If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-5x-108=0
a = 1; b = -5; c = -108;
Δ = b2-4ac
Δ = -52-4·1·(-108)
Δ = 457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{457}}{2*1}=\frac{5-\sqrt{457}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{457}}{2*1}=\frac{5+\sqrt{457}}{2} $
| X-28+2y-1=180 | | 6x+69=12-13x, | | x^26x-39=0 | | 29=3x+17 | | 8x-22=5x+8 | | -4(10+3x)-(x+8)=-9 | | 9x-20=3x+34 | | z/5-4=1.16666666666 | | a/11-2=11 | | z/5-4=1.1666666666666 | | 28=2n+9 | | x*x-1+3x(x-1)=0 | | 9x*3+9=0 | | g-42/5=-11/8 | | -6(2x+4)+1/2(8+3x)=-20 | | 49s^2+126s=81 | | 2,2n+0,8n+5=4n | | |8=3|4x-10| | | 2(x+8)=x+27 | | Z^3=46+9i | | r^2-4+4=0 | | 2x+9=13(x+3)−2x+9=13(x+3) | | 107+2x-5=16x | | −2x+9=13(x+3)−2x+9=13(x+3) | | 15=9-6w | | z2=3z1-8 | | 15-9=6w | | 2r/3-2/5=4 | | -5+x/3=1 | | 3n/2=7+n/3 | | -5x+7=2x-3x | | -5x+7=-2x-3,x |